23 research outputs found

    Natural history of non-lethal raine syndrome during childhood

    Get PDF
    Background: Raine syndrome (RS) is a rare autosomal recessive disorder caused by biallelic loss-of-function mutations of FAM20C. The most common clinical features are microcephaly, exophthalmos, hypoplastic nose and severe midface hypoplasia, leading to choanal atresia. The radiological findings include generalized osteosclerosis and brain calcifications. RS is usually lethal during the neonatal period due to severe respiratory distress. However, there exists a non-lethal RS form, the phenotype of which is extremely heterogeneous. There is paucity of data about clinical course and life expectancy of these patients.Results: This is the first description of follow-up features of non-lethal RS patients. Moreover, we present three unpublished cases. There are five Asian and two Arab patients. All were born to consanguineous parents. The most common neonatal comorbidity was respiratory distress secondary to choanal atresia. A variable degree of neurodevelopmental delay was seen in the majority of our cases and seizures and hearing or vision involvement were also frequent. Neurological and orthopedic issues were the most frequent complications seen at follow-up in our group. Persistent hypophosphatemic rickets was the most striking endocrinological manifestation, which was scarcely responsive to therapy with phosphate salts and alfacalcidol. Life expectancy of our patients goes beyond childhood, with the oldest of those described being 18 years old at present.Conclusions: Manifestations of RS in those surviving the neonatal period are being increasingly recognized. Our study supports previous findings and provides clinical and biochemical observations and data from longer follow up. Finally, we propose multidisciplinary follow up for patients with non-lethal RS

    Clinical description and mutational profile of a moroccan series of patients with rubinstein taybi syndrome

    Get PDF
    Background: Rubinstein-Taybi syndrome (RSTS; OMIM 180849) is a rare autosomal dominant developmental disorder with an estimated prevalence of one case per 125,000 live births. RSTS is characterized by typical face, broad thumbs and halluces, short stature, and intellectual disability. Facial dysmorphy is characteristic with microcephaly, low frontal hairline, arched eyebrows, long eyelashes, convex profile of nose, narrow palate, and micrognathia. RSTS is mainly due to mutations or microdeletions of the CREBBP gene (about 60%) and more rarely of the EP300 gene (8%). Objective: Clinical description and identification of mutations of patients with Rubinstein Taybi syndrome Methods: PCR and direct sequencing of CREBBP gene. Results: We report here, the clinical and molecular data of a series of six Moroccan patients with a phenotype of RSTS. The molecular study of the major gene CREBBP (by Sanger Sequencing followed by CGH array, if sequence normal) revealed point mutations in five patients. For the sixth patient, CGH array revealed a microdeletion carrying the CREBBP gene. Through this work, we emphasize the importance of clinical expertise in the diagnosis, management and genetic counseling in Rubinstein Taybi syndrome

    De novo mutations in SMCHD1 cause Bosma arhinia microphthalmia syndrome and abrogate nasal development

    Get PDF
    Bosma arhinia microphthalmia syndrome (BAMS) is an extremely rare and striking condition characterized by complete absence of the nose with or without ocular defects. We report here that missense mutations in the epigenetic regulator SMCHD1 mapping to the extended ATPase domain of the encoded protein cause BAMS in all 14 cases studied. All mutations were de novo where parental DNA was available. Biochemical tests and in vivo assays in Xenopus laevis embryos suggest that these mutations may behave as gain-of-function alleles. This finding is in contrast to the loss-of-function mutations in SMCHD1 that have been associated with facioscapulohumeral muscular dystrophy (FSHD) type 2. Our results establish SMCHD1 as a key player in nasal development and provide biochemical insight into its enzymatic function that may be exploited for development of therapeutics for FSHD

    A recurrent mutation in Moroccan patients with Dyggve-Melchior-Clausen syndrome: Report of a new case and review

    No full text
    Dyggve-Melchior-Clausen (DMC) syndrome is a rare autosomal recessive disorder. It is a spondyloepimetaphyseal dysplasia associated with mental retardation. Clinical manifestations include coarse facies, microcephaly, short trunk dwarfism, and mental retardation. Mutations in Dymeclin gene (DYM), mapped to chromosome 18q21.1, is responsible for DMC. We report here the observation of a consanguineous Moroccan patient having DMC syndrome. The molecular studies showed a previously reported homozygous mutation at c.1878delA of DYM gene. We discuss this recurrent mutation in Moroccan patients with DMC syndrome with a review

    Characterization of a rare short arm heteromorphism of chromosome 22 in a girl with down-syndrome like facies

    No full text
    Chromosomal heteromorphisms are described as interindividual variation of chromosomes without phenotypic consequence. Chromosomal polymorphisms detected include most regions of heterochromatin of chromosomes 1, 9, 16 and Y and the short arms of all acrocentric chromosomes. Here, we report a girl with Down-syndrome such as facies and tremendously enlarged short arm of a chromosome 22. Fluorescence in situ hybridization (FISH) with a probe specific for all acrocentric short arms revealed that the enlargement p arms of the chromosome 22 in question contained exclusively heterochromatic material derived from an acrocentric short arm. Parental studies identified a maternal origin of this heteromorphism. Cryptic trisomy 21 of the Down-syndrome critical region was excluded by a corresponding FISH-probe. Here, we report, to the best of our knowledge, largest ever seen chromosome 22 short arm, being ~×1.5 larger than the normal long arm

    A recurrent mutation in Moroccan patients with Dyggve-Melchior-Clausen syndrome: Report of a new case and review

    No full text
    Dyggve-Melchior-Clausen (DMC) syndrome is a rare autosomal recessive disorder. It is a spondyloepimetaphyseal dysplasia associated with mental retardation. Clinical manifestations include coarse facies, microcephaly, short trunk dwarfism, and mental retardation. Mutations in Dymeclin gene (DYM), mapped to chromosome 18q21.1, is responsible for DMC. We report here the observation of a consanguineous Moroccan patient having DMC syndrome. The molecular studies showed a previously reported homozygous mutation at c.1878delA of DYM gene. We discuss this recurrent mutation in Moroccan patients with DMC syndrome with a review

    Moroccan consanguineous family with Becker myotonia and review

    No full text
    Myotonia congenita is a genetic muscle disorder characterized by clinical and electrical myotonia, muscle hypertrophy, and stiffness. It is inherited as either autosomal-dominant or –recessive, known as Thomsen and Becker diseases, respectively. These diseases are distinguished by the severity of their symptoms and their patterns of inheritance. Becker disease usually appears later in childhood than Thomsen disease and causes more severe muscle stiffness and pain. Mutations in the muscular voltage-dependent chloride channel gene (CLCN1), located at 7q35, have been found in both types. We report here the case of a Moroccan consanguineous family with a myotonic autosomal-recessive condition in two children. The molecular studies showed that the patients reported here are homozygous for mutation p.Gly482Arg in the CLCN1 gene. The parents were heterozygote carriers for mutation p.Gly482Arg. This diagnosis allowed us to provide an appropriate management to the patients and to make a genetic counselling to their family

    High frequency of the recurrent c.1310_1313delAAGA BRCA2 mutation in the North-East of Morocco and implication for hereditary breast–ovarian cancer prevention and control

    No full text
    Abstract Background To date, a limited number of BRCA1/2 germline mutations have been reported in hereditary breast and/or ovarian cancer in the Moroccan population. Less than 20 different mutations of these two genes have been identified in Moroccan patients, and recently we reported a further BRCA2 mutation (c.1310_1313delAAGA; p.Lys437IlefsX22) in three unrelated patients, all from the North-East of the country. We aimed in this study to evaluate the frequency and geographic distribution of this BRCA2 frameshift mutation, in order to access its use as the first-line BRCA genetic testing strategy for Moroccan patients. We enrolled in this study 122 patients from different regions of Morocco, with suggestive inherited predisposition to breast and ovarian cancers. All subjects gave written informed consent to BRCA1/2 genetic testing. According to available resources of our lab and enrolled families, 51 patients were analyzed by the conventional individual exon-by-exon Sanger sequencing, 23 patients were able to benefit from a BRCA next generation sequencing and a target screening for exon 10 of BRCA2 gene was performed in 48 patients. Results Overall, and among the 122 patients analyzed for at least the exon 10 of the BRCA2 gene, the c.1310_1313delAAGA frameshift mutation was found in 14 patients. Genealogic investigation revealed that all carriers of this mutation shared the same geographic origin and were descendants of the North-East of Morocco. Discussion In this study, we highlighted that c.1310_1313delAAGA mutation of BRCA2 gene is recurrent with high frequency in patients from the North-East region of Morocco. Therefore, we propose to use, in public health strategies, the detection of this mutation as the first-line screening tests in patients with breast and ovarian cancer originated from this region

    Homozygous nonsense mutation of WNT10B gene in a Moroccan family with split-hand foot malformation identified by exome sequencing: a case report

    Get PDF
    Split-hand foot malformation (SHFM) is a clinically heterogeneous congenital limb defect affecting predominantly the central rays of hands and/or feet. The clinical expression varies in severity between patients as well between the limbs in the same individual. SHFM might be non-syndromic with limb-confined manifestations or syndromic with extra-limb manifestations. Isolated SHFM is a rare condition with an incidence of about 1 per 18,000 live born infants and accounts for 8-17% of all limb malformations. To date, many chromosomal loci and genes have been described as associated with isolated SHFM, i.e., SHFM1 to 6. SHFM6 is one of the rarest forms of SHFM, and is caused by mutations in WNT10B gene. Less than ten pathogenic variants have been described. We have investigated a large consanguineous Moroccan family with three affected members showing feet malformations with or without split hand malformation phenotypes. Using an exome sequencing approach, we identified a homozygous nonsense variant p.Arg115* of WNT10B gene retaining thereby the diagnosis of SHFM6. This homozygous nonsense mutation identified by exome sequencing in a large family of split hand foot malformation highlights the importance of exome sequencing in genetically heterogeneous entities

    Novel DDR2 mutation identified by whole exome sequencing in a Moroccan patient with spondylo-meta-epiphyseal dysplasia, short limb-abnormal calcification type

    No full text
    Spondylo-meta-epiphyseal dysplasia (SMED), short limb-abnormal calcification type (SMED, SL-AC), is a very rare autosomal recessive disorder with various skeletal changes characterized by premature calcification leading to severe disproportionate short stature. Twenty-two patients have been reported until now, but only five mutations (four missense and one splice-site) in the conserved sequence encoding the tyrosine kinase domain of the DDR2 gene has been identified. We report here a novel DDR2 missense mutation, c.370C>T (p.Arg124Trp) in a Moroccan girl with SMED, SL-AC, identified by whole exome sequencing. Our study has expanded the mutational spectrum of this rare disease and it has shown that exome sequencing is a powerful and cost-effective tool for the diagnosis of clinically heterogeneous disorders such as SMED. (c) 2015 Wiley Periodicals, Inc
    corecore